3.6.80 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [580]

3.6.80.1 Optimal result
3.6.80.2 Mathematica [A] (verified)
3.6.80.3 Rubi [A] (verified)
3.6.80.4 Maple [A] (verified)
3.6.80.5 Fricas [B] (verification not implemented)
3.6.80.6 Sympy [F]
3.6.80.7 Maxima [A] (verification not implemented)
3.6.80.8 Giac [F]
3.6.80.9 Mupad [F(-1)]

3.6.80.1 Optimal result

Integrand size = 33, antiderivative size = 276 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

output
1/2*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/ 
d*2^(1/2)+1/2*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*arctan(1+2^(1/2)*cot(d*x+c 
)^(1/2))/d*2^(1/2)-1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*ln(1+cot(d*x+c)-2 
^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*l 
n(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+2*b^2*B/d/cot(d*x+c)^(1 
/2)-2*a^2*A*cot(d*x+c)^(1/2)/d
 
3.6.80.2 Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 221, normalized size of antiderivative = 0.80 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {\sqrt {\cot (c+d x)} \left (2 \sqrt {2} \left (a^2 (A-B)+b^2 (-A+B)-2 a b (A+B)\right ) \left (\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )-\sqrt {2} \left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \left (\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )-\frac {8 a^2 A}{\sqrt {\tan (c+d x)}}+8 b^2 B \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)}}{4 d} \]

input
Integrate[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x 
]
 
output
(Sqrt[Cot[c + d*x]]*(2*Sqrt[2]*(a^2*(A - B) + b^2*(-A + B) - 2*a*b*(A + B) 
)*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[c 
+ d*x]]]) - Sqrt[2]*(2*a*b*(A - B) + a^2*(A + B) - b^2*(A + B))*(Log[1 - S 
qrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d 
*x]] + Tan[c + d*x]]) - (8*a^2*A)/Sqrt[Tan[c + d*x]] + 8*b^2*B*Sqrt[Tan[c 
+ d*x]])*Sqrt[Tan[c + d*x]])/(4*d)
 
3.6.80.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.83, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 4064, 3042, 4087, 25, 3042, 4113, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+b \tan (c+d x))^2 (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {(a \cot (c+d x)+b)^2 (A \cot (c+d x)+B)}{\cot ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (B-A \tan \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4087

\(\displaystyle \frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}-\int -\frac {a^2 A \cot ^2(c+d x)+\left (B a^2+2 A b a-b^2 B\right ) \cot (c+d x)+b (A b+2 a B)}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {a^2 A \cot ^2(c+d x)+\left (B a^2+2 A b a-b^2 B\right ) \cot (c+d x)+b (A b+2 a B)}{\sqrt {\cot (c+d x)}}dx+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2 A \tan \left (c+d x+\frac {\pi }{2}\right )^2-\left (B a^2+2 A b a-b^2 B\right ) \tan \left (c+d x+\frac {\pi }{2}\right )+b (A b+2 a B)}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4113

\(\displaystyle \int \frac {-A a^2+2 b B a+A b^2+\left (B a^2+2 A b a-b^2 B\right ) \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-A a^2+2 b B a+A b^2-\left (B a^2+2 A b a-b^2 B\right ) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {A a^2-2 b B a-A b^2-\left (B a^2+2 A b a-b^2 B\right ) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )+\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d}-\frac {2 a^2 A \sqrt {\cot (c+d x)}}{d}+\frac {2 b^2 B}{d \sqrt {\cot (c+d x)}}\)

input
Int[Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]
 
output
(2*b^2*B)/(d*Sqrt[Cot[c + d*x]]) - (2*a^2*A*Sqrt[Cot[c + d*x]])/d + (2*((( 
a^2*(A - B) - b^2*(A - B) - 2*a*b*(A + B))*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[ 
c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]))/2 + 
 ((2*a*b*(A - B) + a^2*(A + B) - b^2*(A + B))*(-1/2*Log[1 - Sqrt[2]*Sqrt[C 
ot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] 
+ Cot[c + d*x]]/(2*Sqrt[2])))/2))/d
 

3.6.80.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4087
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f 
_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[ 
(-(B*c - A*d))*(b*c - a*d)^2*((c + d*Tan[e + f*x])^(n + 1)/(f*d^2*(n + 1)*( 
c^2 + d^2))), x] + Simp[1/(d*(c^2 + d^2))   Int[(c + d*Tan[e + f*x])^(n + 1 
)*Simp[B*(b*c - a*d)^2 + A*d*(a^2*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2* 
c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*(c^2 + d^2 
)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b 
*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
3.6.80.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.87

method result size
derivativedivides \(-\frac {2 A \,a^{2} \sqrt {\cot \left (d x +c \right )}+\frac {\left (-A \,a^{2}+A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 a b A +B \,a^{2}-B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}-\frac {2 B \,b^{2}}{\sqrt {\cot \left (d x +c \right )}}}{d}\) \(239\)
default \(-\frac {2 A \,a^{2} \sqrt {\cot \left (d x +c \right )}+\frac {\left (-A \,a^{2}+A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}+\frac {\left (2 a b A +B \,a^{2}-B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{4}-\frac {2 B \,b^{2}}{\sqrt {\cot \left (d x +c \right )}}}{d}\) \(239\)

input
int(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETURNV 
ERBOSE)
 
output
-1/d*(2*A*a^2*cot(d*x+c)^(1/2)+1/4*(-A*a^2+A*b^2+2*B*a*b)*2^(1/2)*(ln((1+c 
ot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2) 
))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/ 
2)))+1/4*(2*A*a*b+B*a^2-B*b^2)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c 
)^(1/2))/(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d 
*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))-2*B*b^2/cot(d*x+c)^(1/ 
2))
 
3.6.80.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4248 vs. \(2 (244) = 488\).

Time = 2.28 (sec) , antiderivative size = 4248, normalized size of antiderivative = 15.39 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorith 
m="fricas")
 
output
1/2*(d*sqrt((2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b 
- 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B 
 - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A* 
B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A* 
B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3) 
*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(((A*a^2 - 2*B*a*b - A 
*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 
4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*( 
19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*( 
3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2* 
A^2*B^2 + B^4)*b^8)/d^4) - ((A^2*B - B^3)*a^6 + 2*(A^3 - 5*A*B^2)*a^5*b - 
(23*A^2*B - 7*B^3)*a^4*b^2 - 4*(3*A^3 - 7*A*B^2)*a^3*b^3 + (23*A^2*B - 7*B 
^3)*a^2*b^4 + 2*(A^3 - 5*A*B^2)*a*b^5 - (A^2*B - B^3)*b^6)*d)*sqrt((2*A*B* 
a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b 
^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4 
*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(1 
9*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3 
*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A 
^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b 
 - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a...
 
3.6.80.6 Sympy [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{2} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

input
integrate(cot(d*x+c)**(3/2)*(a+b*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)
 
output
Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**2*cot(c + d*x)**(3/2), 
 x)
 
3.6.80.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.88 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {8 \, B b^{2} \sqrt {\tan \left (d x + c\right )} + 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \frac {8 \, A a^{2}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorith 
m="maxima")
 
output
1/4*(8*B*b^2*sqrt(tan(d*x + c)) + 2*sqrt(2)*((A - B)*a^2 - 2*(A + B)*a*b - 
 (A - B)*b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqr 
t(2)*((A - B)*a^2 - 2*(A + B)*a*b - (A - B)*b^2)*arctan(-1/2*sqrt(2)*(sqrt 
(2) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*((A + B)*a^2 + 2*(A - B)*a*b - (A + 
 B)*b^2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(( 
A + B)*a^2 + 2*(A - B)*a*b - (A + B)*b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) 
+ 1/tan(d*x + c) + 1) - 8*A*a^2/sqrt(tan(d*x + c)))/d
 
3.6.80.8 Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{2} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorith 
m="giac")
 
output
integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^2*cot(d*x + c)^(3/2), 
x)
 
3.6.80.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2 \,d x \]

input
int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^2,x)
 
output
int(cot(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^2, x)